首页> 外文期刊>Neural processing letters >An Improved Structured Low-Rank Representation for Disjoint Subspace Segmentation
【24h】

An Improved Structured Low-Rank Representation for Disjoint Subspace Segmentation

机译:用于脱节子空间分割的改进的结构化低秩表示

获取原文
获取原文并翻译 | 示例

摘要

Low-rank representation (LRR) and its extensions have shown prominent performances in subspace segmentation tasks. Among these algorithms, structured-constrained low-rank representation (SCLRR) is proved to be superior to classical LRR because of its usage of structure information of data sets. Compared with LRR, in the objective function of SCLRR, an additional constraint term is added to compel the obtained coefficient matrices to reveal the subspace structures of data sets more precisely. However, it is very difficult to determine the best value for the corresponding parameter of the constraint term, and an improper value will decrease the performance of SCLRR sharply. For the sake of alleviating the problem in SCLRR, in this paper, we proposed an improved structured low-rank representation (ISLRR). Our proposed method introduces the structure information of data sets into the equality constraint term of LRR. Hence, ISLRR avoids the adjustment of the extra parameter. Experiments conducted on some benchmark databases showed that the proposed algorithm was superior to the related algorithms.
机译:低秩表示(LRR)及其扩展在子空间分割任务中显示出突出的性能。在这些算法中,由于其使用数据集的结构信息,证明了结构约束的低秩表示(SCLRR)被证明优于经典LRR。与LRR相比,在SCLRR的目标函数中,添加了一个附加的约束项以迫使所获得的系数矩阵,以更精确地揭示数据集的子空间结构。但是,很难确定约束项的相应参数的最佳值,并且不正当的值将降低SCLR的性能急剧下降。为了减轻SCLRR的问题,在本文中,我们提出了一种改进的结构性低级表示(ISLRR)。我们所提出的方法将数据集的结构信息介绍到LRR的平等约束项中。因此,ISLRR避免了额外参数的调整。在某些基准数据库上进行的实验表明,所提出的算法优于相关算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号