首页> 外文期刊>Neural processing letters >Pruning the Ensemble of ANN Based on Decision Tree Induction
【24h】

Pruning the Ensemble of ANN Based on Decision Tree Induction

机译:基于决策树归纳的神经网络集成修剪

获取原文
获取原文并翻译 | 示例

摘要

Ensemble learning is a powerful approach for achieving more accurate predictions compared with single classifier. However, this powerful classification ability is achieved at the expense of heavy storage requirements and computational burdens on the ensemble. Ensemble pruning is a crucial step for the reduction of the predictive overhead without worsening the performance of original ensemble. This paper suggests an efficient and effective ordering-based ensemble pruning based on the induction of decision tree. The suggested method maps the dataset and base classifiers to a new dataset where the ensemble pruning can be transformed to a feature selection problem. Furthermore, a set of accurate, diverse and complementary base classifiers can be selected by the induction of decision tree. Moreover, an evaluation function that deliberately favors the candidate sub-ensembles with an improved performance in classifying low margin instances has also been designed. The comparative experiments on 24 benchmark datasets demonstrate the effectiveness of our proposed method.
机译:与单个分类器相比,集成学习是一种实现更准确的预测的强大方法。但是,以强大的存储需求和整体计算负担为代价实现了这种强大的分类能力。合奏修剪是减少预测开销而又不降低原始合奏性能的关键步骤。本文提出了一种基于决策树归纳的高效且基于排序的集成修剪。建议的方法将数据集和基本分类器映射到新数据集,在该数据集中可以将整体修剪转换为特征选择问题。此外,可以通过归纳决策树来选择一组准确,多样且互补的基础分类器。此外,还设计了一种评估功能,该功能在分类低边际实例时以改进的性能故意偏爱候选子集成。在24个基准数据集上的比较实验证明了我们提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号