首页> 外文期刊>Neural, Parallel & Scientific Computations >Estimate For The Number Of Zeros Of Abelian Integrals For A Kind Of Quartic Hamiltonians
【24h】

Estimate For The Number Of Zeros Of Abelian Integrals For A Kind Of Quartic Hamiltonians

机译:一类四次哈密顿量的Abelian积分的零点数目的估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we give a lower upper bound of the number of zeros of part of the Abelian integral I(h) = ∫_(δ(h))P(x,y)dx+Q(x,y)dy, h ∈ ∑, where δ(h) is an oval contained in the level set {H{x, y) = y~2 + x~4 - x~2 = h}, P(x, y), Q(x, y) are real polynomials of x and y with degree not greater than n, ∑ is the maximal interval of the existence of the ovals {δ(h)}. The corresponding vector space of the Abelian integral I(h) defined on the open interval E obeys the Chebyshev property (the maximal number of isolated zeros of each function is less than the dimension of the space of functions).
机译:在本文中,我们给出了Abelian积分I(h)=∫_(δ(h))P(x,y)dx + Q(x,y)dy的部分零数目的下界, h∈∑,其中δ(h)是包含在水平集合{H {x,y)= y〜2 + x〜4-x〜2 = h}中的椭圆形,P(x,y),Q(x ,y)是x和y的实多项式,其度数不大于n,∑是存在椭圆{δ(h)}的最大间隔。在开放区间E上定义的阿贝尔积分I(h)的对应向量空间服从Chebyshev属性(每个函数的孤立零的最大数目小于函数空间的维数)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号