首页> 外文期刊>IEEE Transactions on Neural Networks >Identification and control of dynamical systems using neural networks
【24h】

Identification and control of dynamical systems using neural networks

机译:使用神经网络识别和控制动力系统

获取原文
获取原文并翻译 | 示例

摘要

It is demonstrated that neural networks can be used effectively for the identification and control of nonlinear dynamical systems. The emphasis is on models for both identification and control. Static and dynamic backpropagation methods for the adjustment of parameters are discussed. In the models that are introduced, multilayer and recurrent networks are interconnected in novel configurations, and hence there is a real need to study them in a unified fashion. Simulation results reveal that the identification and adaptive control schemes suggested are practically feasible. Basic concepts and definitions are introduced throughout, and theoretical questions that have to be addressed are also described.
机译:证明了神经网络可以有效地用于非线性动力学系统的识别和控制。重点是用于识别和控制的模型。讨论了用于参数调整的静态和动态反向传播方法。在引入的模型中,多层网络和循环网络以新颖的配置相互连接,因此,确实有必要以统一的方式研究它们。仿真结果表明,所提出的辨识和自适应控制方案是切实可行的。全文介绍了基本概念和定义,还介绍了必须解决的理论问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号