首页> 外文期刊>IEEE Transactions on Neural Networks >Code vector density in topographic mappings: Scalar case
【24h】

Code vector density in topographic mappings: Scalar case

机译:地形图中的代码矢量密度:标量情况

获取原文
获取原文并翻译 | 示例

摘要

The author derives some new results that build on his earlier work (1989) of combining vector quantization (VQ) theory and topographic mapping (TM) theory. A VQ model (with a noisy transmission medium) is used to model the processes that occur in TMs, which leads to the standard TM training algorithm, albeit with a slight modification to the encoding process. To emphasize this difference, the model is called a topographic vector quantizer (TVQ). In the continuum limit of the one-dimensional (scalar) TVQ. It is found that the density of code vectors is proportional to P(x)/sup a/ ( alpha =1/3) assuming that the transmission medium introduces additive noise with a zero-mean, symmetric, monotically decreasing probability density. This result is dramatically different from the result that is predicted when the standard TM training algorithm is used with a uniform symmetric neighborhood (-n, +n), and it is noted that this difference arises entirely from using minimum distortion rather than nearest neighbor encoding.
机译:作者在他的早期工作(1989年)的基础上得出了一些新结果,该工作将矢量量化(VQ)理论和地形图(TM)理论相结合。 VQ模型(带有嘈杂的传输介质)用于对TM中发生的过程进行建模,这导致了标准的TM训练算法,尽管对编码过程进行了少许修改。为了强调这种差异,该模型称为地形矢量量化器(TVQ)。在一维(标量)TVQ的连续极限中。已经发现,假设传输介质以零均值,对称,单调递减的概率密度引入加性噪声,则码矢量的密度与P(x)/ sup a /(alpha = 1/3)成正比。该结果与标准TM训练算法与均匀对称邻域(-n,+ n)一起使用时所预测的结果显着不同,并且应注意,这种差异完全源于使用最小失真而不是最近邻编码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号