首页> 外文期刊>IEEE Transactions on Neural Networks >A tree-structured adaptive network for function approximation in high-dimensional spaces
【24h】

A tree-structured adaptive network for function approximation in high-dimensional spaces

机译:高维空间中函数逼近的树型自适应网络

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear function approximation is often solved by finding a set of coefficients for a finite number of fixed nonlinear basis functions. However, if the input data are drawn from a high-dimensional space, the number of required basis functions grows exponentially with dimension, leading many to suggest the use of adaptive nonlinear basis functions whose parameters can be determined by iterative methods. The author proposes a technique based on the idea that for most of the data, only a few dimensions of the input may be necessary to compute the desired output function. Additional input dimensions are incorporated only where needed. The learning procedure grows a tree whose structure depends upon the input data and the function to be approximated. This technique has a fast learning algorithm with no local minima once the network shape is fixed, and it can be used to reduce the number of required measurements in situations where there is a cost associated with sensing. Three examples are given: controlling the dynamics of a simulated planar two-joint robot arm, predicting the dynamics of the chaotic Mackey-Glass equation, and predicting pixel values in real images from pixel values above and to the left.
机译:非线性函数逼近通常是通过为有限数量的固定非线性基函数找到一组系数来解决的。但是,如果输入数据是从高维空间中提取的,则所需基函数的数量会随维数呈指数增长,这导致许多人建议使用自适应非线性基函数,其参数可以通过迭代方法确定。作者提出了一种基于以下思想的技术:对于大多数数据而言,仅少数几个输入维度就可以计算出所需的输出函数。仅在需要时合并其他输入尺寸。学习过程将生长一棵树,其结构取决于输入数据和要近似的函数。该技术具有一种快速学习算法,一旦固定了网络形状,就不会出现局部最小值,并且可以用于减少与传感相关的成本的情况下所需测量的数量。给出了三个示例:控制模拟的平面两关节机械臂的动力学,预测混沌Mackey-Glass方程的动力学,以及根据上方和左侧的像素值预测实际图像中的像素值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号