首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >An adaptive fuzzy neural network for MIMO system modelapproximation in high-dimensional spaces
【24h】

An adaptive fuzzy neural network for MIMO system modelapproximation in high-dimensional spaces

机译:高维空间中MIMO系统模型逼近的自适应模糊神经网络

获取原文
获取原文并翻译 | 示例

摘要

An adaptive fuzzy system implemented within the framework ofnneural network is proposed. The integration of the fuzzy system into anneural network enables the new fuzzy system to have learning andnadaptive capabilities. The proposed fuzzy neural network can locate itsnrules and optimize its membership functions by competitive learning,nKalman filter algorithm and extended Kalman filter algorithms. A keynfeature of the new architecture is that a high dimensional fuzzy systemncan be implemented with fewer number of rules than the Takagi-Sugenonfuzzy systems. A number of simulations are presented to demonstrate thenperformance of the proposed system including modeling nonlinearnfunction, operator's control of chemical plant, stock prices andnbioreactor (multioutput dynamical system)
机译:提出了一种在神经网络框架内实现的自适应模糊系统。将模糊系统集成到神经网络中使新的模糊系统具有学习和适应能力。所提出的模糊神经网络可以通过竞争学习,nKalman滤波算法和扩展的Kalman滤波算法来定位其节点并优化其隶属函数。新体系结构的一个关键特征是,与Takagi-Sugenonfuzzy系统相比,可以用更少的规则来实现高维模糊系统。进行了许多模拟,以证明所建议系统的性能,其中包括建模非线性函数,化工厂的操作员控制,股票价格和生物反应器(多输出动态系统)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号