首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B >An adaptive fuzzy neural network for MIMO system model approximation in high-dimensional spaces
【24h】

An adaptive fuzzy neural network for MIMO system model approximation in high-dimensional spaces

机译:高维空间中MIMO系统模型逼近的自适应模糊神经网络

获取原文
获取原文并翻译 | 示例

摘要

An adaptive fuzzy system implemented within the framework of neural network is proposed. The integration of the fuzzy system into a neural network enables the new fuzzy system to have learning and adaptive capabilities. The proposed fuzzy neural network can locate its rules and optimize its membership functions by competitive learning, Kalman filter algorithm and extended Kalman filter algorithms. A key feature of the new architecture is that a high dimensional fuzzy system can be implemented with fewer number of rules than the Takagi-Sugeno fuzzy systems. A number of simulations are presented to demonstrate the performance of the proposed system including modeling nonlinear function, operator's control of chemical plant, stock prices and bioreactor (multioutput dynamical system).
机译:提出了一种在神经网络框架内实现的自适应模糊系统。将模糊系统集成到神经网络使新的模糊系统具有学习和自适应能力。所提出的模糊神经网络可以通过竞争学习,卡尔曼滤波算法和扩展卡尔曼滤波算法来定位其规则并优化其隶属函数。新体系结构的一个关键特征是,与Takagi-Sugeno模糊系统相比,可以用更少的规则来实现高维模糊系统。进行了许多模拟,以证明所建议系统的性能,包括建模非线性函数,化工厂的操作员控制,股票价格和生物反应器(多输出动态系统)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号