首页> 外文期刊>IEEE Transactions on Neural Networks >Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm
【24h】

Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm

机译:模糊c壳聚类算法的数值收敛与解释。

获取原文
获取原文并翻译 | 示例

摘要

R. N. Dave's (1990) version of fuzzy c-shells is an iterative clustering algorithm which requires the application of Newton's method or a similar general optimization technique at each half step in any sequence of iterates for minimizing the associated objective function. An important computational question concerns the accuracy of the solution required at each half step within the overall iteration. The general convergence theory for grouped coordination minimization is applied to this question to show that numerically exact solution of the half-step subproblems in Dave's algorithm is not necessary. One iteration of Newton's method in each coordinate minimization half step yields a sequence obtained using the fuzzy c-shells algorithm with numerically exact coordinate minimization at each half step. It is shown that fuzzy c-shells generates hyperspherical prototypes to the clusters it finds for certain special cases of the measure of dissimilarity used.
机译:R. N. Dave(1990)版本的模糊c-shells是一种迭代聚类算法,需要在任何迭代序列的每个半步中应用Newton方法或类似的通用优化技术,以最小化相关的目标函数。一个重要的计算问题涉及整个迭代中每个半步所需的解决方案的准确性。将用于分组协调最小化的通用收敛理论应用于该问题,以表明不需要在Dave算法中精确求解半步子问题。牛顿方法在每个坐标最小化半步中的一次迭代产生了一个序列,该序列使用模糊c壳算法在每个半步中具有数值精确的坐标最小化而获得。结果表明,模糊c壳会为聚类生成超球面原型,并在某些特殊情况下发现所使用的相异性度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号