首页> 外文期刊>IEEE Transactions on Neural Networks >An analog neural hardware implementation using charge-injection multipliers and neutron-specific gain control
【24h】

An analog neural hardware implementation using charge-injection multipliers and neutron-specific gain control

机译:使用电荷注入乘法器和中子特定增益控制的模拟神经硬件实现

获取原文
获取原文并翻译 | 示例

摘要

A neural network IC based on a dynamic charge injection is described. The hardware design is space and power efficient, and achieves massive parallelism of analog inner products via charge-based multipliers and spatially distributed summing buses. Basic synaptic cells are constructed of exponential pulse-decay modulation (EPDM) dynamic injection multipliers operating sequentially on propagating signal vectors and locally stored analog weights. Individually adjustable gain controls on each neutron reduce the effects of limited weight dynamic range. A hardware simulator/trainer has been developed which incorporates the physical (nonideal) characteristics of actual circuit components into the training process, thus absorbing nonlinearities and parametric deviations into the macroscopic performance of the network. Results show that charge-based techniques may achieve a high degree of neural density and throughput using standard CMOS processes.
机译:描述了基于动态电荷注入的神经网络IC。硬件设计节省了空间和功率,并通过基于电荷的乘法器和空间分布的求和总线实现了模拟内部产品的大规模并行性。基本的突触细胞由指数脉冲衰减调制(EPDM)动态注入乘法器构成,该乘法器在传播的信号矢量和本地存储的模拟权重上顺序运行。每个中子的可单独调节的增益控制可减少有限重量动态范围的影响。已经开发了一种硬件模拟器/训练器,它将实际电路组件的物理(非理想)特性纳入训练过程,从而将非线性和参数偏差吸收到网络的宏观性能中。结果表明,基于电荷的技术可以使用标准CMOS工艺实现高度的神经密度和吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号