首页> 外文期刊>IEEE Transactions on Neural Networks >Memory neuron networks for identification and control of dynamical systems
【24h】

Memory neuron networks for identification and control of dynamical systems

机译:记忆神经元网络用于动态系统的识别和控制

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses memory neuron networks as models for identification and adaptive control of nonlinear dynamical systems. These are a class of recurrent networks obtained by adding trainable temporal elements to feedforward networks that makes the output history-sensitive. By virtue of this capability, these networks can identify dynamical systems without having to be explicitly fed with past inputs and outputs. Thus, they can identify systems whose order is unknown or systems with unknown delay. It is argued that for satisfactory modeling of dynamical systems, neural networks should be endowed with such internal memory. The paper presents a preliminary analysis of the learning algorithm, providing theoretical justification for the identification method. Methods for adaptive control of nonlinear systems using these networks are presented. Through extensive simulations, these models are shown to be effective both for identification and model reference adaptive control of nonlinear systems.
机译:本文讨论了记忆神经元网络,作为非线性动力学系统识别和自适应控制的模型。这些是通过将可训练的时间元素添加到前馈网络而获得的一类递归网络,前馈网络使输出历史敏感。借助此功能,这些网络可以识别动态系统,而不必明确地提供过去的输入和输出。因此,他们可以识别顺序未知的系统或延迟未知的系统。有人认为,为使动力学系统令人满意地建模,应将这种内部记忆赋予神经网络。本文对学习算法进行了初步分析,为识别方法提供了理论依据。提出了使用这些网络对非线性系统进行自适应控制的方法。通过广泛的仿真,这些模型对于非线性系统的识别和模型参考自适应控制均有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号