首页> 外文期刊>IEEE Transactions on Neural Networks >Artificial neural networks for 3-D motion analysis. I. Rigid motion
【24h】

Artificial neural networks for 3-D motion analysis. I. Rigid motion

机译:用于3D运动分析的人工神经网络。一,刚性运动

获取原文
获取原文并翻译 | 示例

摘要

Proposes an approach applying artificial neural net techniques to 3D rigid motion analysis based on sequential multiple time frames. The approach consists of two phases: (1) matching between every two consecutive frames and (2) estimating motion parameters based on the correspondences established. Phase 1 specifies the matching constraints to ensure a stable and coherent feature correspondence establishment between two sequential time frames and configures a 2D Hopfield neural net to enforce these constraints. Phase 2 constructs a 3-layer net to estimate parameters through supervised learning. The method performs motion analysis based on sequential multiple time frames. It represents an effective way to achieve optimal matching between two frames using neural net techniques. The energy function of the Hopfield net is designed to reflect the matching constraints and the minimization of this function leads to the optimal feature correspondence establishment. The approach introduces the learning concept to motion estimation. The structure of the net provides the flexibility in estimating motion parameters based on information from multiple frames.
机译:提出了一种将人工神经网络技术应用于基于连续多个时间框架的3D刚性运动分析的方法。该方法包括两个阶段:(1)每两个连续帧之间进行匹配,以及(2)根据建立的对应关系估计运动参数。阶段1指定了匹配约束,以确保在两个连续时间帧之间建立稳定且连贯的特征对应关系,并配置2D Hopfield神经网络以强制执行这些约束。第2阶段构建了一个3层网络,通过监督学习来估计参数。该方法基于连续的多个时间帧执行运动分析。它代表了使用神经网络技术在两个帧之间实现最佳匹配的有效方法。 Hopfield网络的能量函数被设计为反映匹配约束,并且该函数的最小化导致最优特征对应关系的建立。该方法将学习概念引入运动估计。网络的结构提供了基于来自多个帧的信息来估计运动参数的灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号