首页> 外文期刊>IEEE Transactions on Neural Networks >Artificial neural networks for 3-D motion analysis-Part II: Nonrigid motion
【24h】

Artificial neural networks for 3-D motion analysis-Part II: Nonrigid motion

机译:用于3-D运动分析的人工神经网络-第二部分:非刚性运动

获取原文
获取原文并翻译 | 示例

摘要

For pt. I see ibid., p. 1386-93 (1995). An approach applying artificial neural net techniques to 3D nonrigid motion analysis is proposed. The 3D nonrigid motion of the left ventricle of a human heart is examined using biplanar cineangiography data, consisting of 3D coordinates of 30 coronary artery bifurcation points of the left ventricle and the correspondences of these points taken over 10 time instants during the heart cardiac cycle. The motion is decomposed into global rigid motion and a set of local nonrigid deformations which are coupled with the global motion. The global rigid motion can be estimated precisely as a translation vecto and a rotation matrix. Local nonrigid deformation estimation is discussed. A set of neural nets similar in structure and dynamics but different in physical size is proposed to tackle the problem of nonrigidity. These neural networks are interconnected through feedbacks. The activation function of the output layer is selected so that a feedback is involved in the output updating. The constraints are specified to ensure stable and globally consistent estimation. The objective is to find the optimal deformation matrices that satisfy the constraints for all coronary artery bifurcation points of the left ventricle. The proposed neural networks differ from other existing neural network models in their unique structure and dynamics.
机译:对于pt。我看同上。 1386-93(1995)。提出了一种将人工神经网络技术应用于3D非刚性运动分析的方法。使用双平面电影血管造影数据检查人心脏的左心室的3D非刚性运动,该数据由左心室的30个冠状动脉分叉点的3D坐标以及在心脏心动周期中超过10个瞬间获取的这些点的对应关系组成。该运动被分解为整体刚性运动和一组与整体运动耦合的局部非刚性变形。整体刚性运动可以精确地估计为平移vecto和旋转矩阵。讨论了局部非刚性变形估计。为了解决非刚性问题,提出了一组结构和动力学相似但物理尺寸不同的神经网络。这些神经网络通过反馈相互连接。选择输出层的激活功能,以便在输出更新中包含反馈。指定约束条件以确保稳定且全局一致的估计。目的是找到满足左心室所有冠状动脉分叉点约束的最佳变形矩阵。所提出的神经网络在其独特的结构和动力学方面与其他现有的神经网络模型不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号