首页> 外文期刊>IEEE Transactions on Neural Networks >Classification of linearly nonseparable patterns by linear threshold elements
【24h】

Classification of linearly nonseparable patterns by linear threshold elements

机译:线性阈值元素对线性不可分离模式的分类

获取原文
获取原文并翻译 | 示例

摘要

Learning and convergence properties of linear threshold elements or perceptrons are well understood for the case where the input vectors (or the training sets) to the perceptron are linearly separable. Little is known, however, about the behavior of the perceptron learning algorithm when the training sets are linearly nonseparable. We present the first known results on the structure of linearly nonseparable training sets and on the behavior of perceptrons when the set of input vectors is linearly nonseparable. More precisely, we show that using the well known perceptron learning algorithm, a linear threshold element can learn the input vectors that are provably learnable, and identify those vectors that cannot be learned without committing errors. We also show how a linear threshold element can be used to learn large linearly separable subsets of any given nonseparable training set. In order to develop our results, we first establish formal characterizations of linearly nonseparable training sets and define learnable structures for such patterns. We also prove computational complexity results for the related learning problems. Next, based on such characterizations, we show that a perceptron does the best one can expect for linearly nonseparable sets of input vectors and learns as much as is theoretically possible.
机译:对于到感知器的输入向量(或训练集)是线性可分离的情况,线性阈值元素或感知器的学习和收敛特性是众所周知的。但是,当训练集线性不可分时,关于感知器学习算法的行为知之甚少。我们提出了关于线性不可分训练集的结构和当输入向量组是线性不可分时的感知器行为的第一个已知结果。更准确地说,我们证明了使用众所周知的感知器学习算法,线性阈值元素可以学习可证明是可学习的输入向量,并识别出不犯错误就无法学习的向量。我们还展示了如何使用线性阈值元素来学习任何给定的不可分离训练集的线性可分离大子集。为了开发我们的结果,我们首先建立线性不可分训练集的形式化特征,并为这种模式定义可学习的结构。我们还证明了相关学习问题的计算复杂度结果。接下来,基于这些特征,我们表明感知器在线性不可分的输入向量集方面表现出了最佳的感知能力,并且在理论上学到了尽可能多的知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号