首页> 外文期刊>IEEE transactions on biomedical circuits and systems >Domain Wall Motion-Based Dual-Threshold Activation Unit for Low-Power Classification of Non-Linearly Separable Functions
【24h】

Domain Wall Motion-Based Dual-Threshold Activation Unit for Low-Power Classification of Non-Linearly Separable Functions

机译:基于域壁运动的双阈值激活单元,用于非线性可分离函数的低功率分类

获取原文
获取原文并翻译 | 示例

摘要

Recently, a great deal of scientific endeavour has been devoted to developing spin-based neuromorphic platforms owing to the ultra-low-power benefits offered by spin devices and the inherent correspondence between spintronic phenomena and the desired neuronal, synaptic behavior. While domain wall motion-based threshold activation unit has previously been demonstrated for neuromorphic circuits, it remains well known that neurons with threshold activation cannot completely learn nonlinearly separable functions. This paper addresses this fundamental limitation by proposing a novel domain wall motion-based dual-threshold activation unit with additional nonlinearity in its function. Furthermore, a new learning algorithm is formulated for a neuron with this activation function. We perform 100 trials of tenfold training and testing of our neural networks on real-world datasets taken from the UCI machine learning repository. On an average, the proposed algorithm achieves 1.04x -6.54x lower misclassification rate (MCR) than the traditional perceptron learning algorithm. In a circuit-level simulation, the neural networks with the proposed activation unit are observed to outperform the perceptron networks by as much as 2.98xMCR. The energy consumption of a neuron having the proposed domain wall motion-based activation unit averages to 35 fJ approximately.
机译:最近,由于自旋装置提供的超低功耗优势以及自旋电子现象与所需的神经元,突触行为之间的固有对应关系,许多科学努力已致力于开发基于自旋的神经形态平台。尽管先前已针对神经形态电路证明了基于畴壁运动的阈值激活单元,但众所周知,具有阈值激活的神经元无法完全学习非线性可分离的功能。本文通过提出一种新颖的基于畴壁运动的双阈值激活单元来解决这一基本限制,该单元具有附加的非线性功能。此外,针对具有这种激活功能的神经元制定了新的学习算法。我们对来自UCI机器学习存储库的真实数据集进行了十次十倍训练,并对神经网络进行了测试,以进行测试。平均而言,与传统的感知器学习算法相比,该算法的误分类率(MCR)降低了1.04倍-6.54倍。在电路级仿真中,观察到带有拟议的激活单元的神经网络的性能比感知器网络高出2.98xMCR。具有建议的基于域壁运动的激活单元的神经元的能量平均约为35 fJ。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号