首页> 外文期刊>IEEE Transactions on Neural Networks >Neural networks for process scheduling in real-time communication systems
【24h】

Neural networks for process scheduling in real-time communication systems

机译:用于实时通信系统中流程调度的神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the use of Hopfield-type neural networks for process scheduling in the area of factory automation, where bus-based communication systems, called FieldBuses, are widely used to connect sensors and actuators to the control systems. We show how it overcomes the problem of the computational complexity of the algorithmic solution. The neural model proposed allows several processes to be scheduled simultaneously; the time required is polynomial with respect to the number of processes being scheduled. This feature allows real-time process scheduling and makes it possible for the scheduling table to adapt to changes in process control features. The paper presents the neural model for process scheduling and assesses its computational complexity, pointing out the drastic reduction in the time needed to generate a schedule as compared with the algorithmic scheduling solution. Finally, the authors propose an on-line scheduling strategy based on the neural model which can achieve real-time adaptation of the scheduling table to changes in the manufacturing environment.
机译:本文介绍了Hopfield型神经网络在工厂自动化领域中的过程调度中的应用,在该领域中,基于总线的通信系统(称为FieldBuses)被广泛用于将传感器和执行器连接到控制系统。我们展示了它如何克服算法解决方案的计算复杂性问题。所提出的神经模型允许同时调度多个过程。所需时间是相对于计划的进程数的多项式。此功能允许进行实时过程调度,并使调度表可以适应过程控制功能的变化。本文提出了一种用于过程调度的神经模型,并评估了其计算复杂性,指出与算法调度解决方案相比,大大减少了生成调度所需的时间。最后,作者提出了一种基于神经模型的在线调度策略,该策略可以实现调度表实时适应制造环境的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号