首页> 外文期刊>IEEE Transactions on Neural Networks >An analog VLSI recurrent neural network learning a continuous-time trajectory
【24h】

An analog VLSI recurrent neural network learning a continuous-time trajectory

机译:学习连续时间轨迹的模拟VLSI递归神经网络

获取原文
获取原文并翻译 | 示例

摘要

Real-time algorithms for gradient descent supervised learning in recurrent dynamical neural networks fail to support scalable VLSI implementation, due to their complexity which grows sharply with the network dimension. We present an alternative implementation in analog VLSI, which employs a stochastic perturbation algorithm to observe the gradient of the error index directly on the network in random directions of the parameter space, thereby avoiding the tedious task of deriving the gradient from an explicit model of the network dynamics. The network contains six fully recurrent neurons with continuous-time dynamics, providing 42 free parameters which comprise connection strengths and thresholds. The chip implementing the network includes local provisions supporting both the learning and storage of the parameters, integrated in a scalable architecture which can be readily expanded for applications of learning recurrent dynamical networks requiring larger dimensionality. We describe and characterize the functional elements comprising the implemented recurrent network and integrated learning system, and include experimental results obtained from training the network to represent a quadrature-phase oscillator.
机译:递归动态神经网络中用于梯度下降监督学习的实时算法由于其复杂性随网络规模而急剧增加,因此无法支持可扩展的VLSI实现。我们提出了模拟VLSI中的另一种实现方式,它采用随机扰动算法直接在参数空间的随机方向上观察误差指数的梯度,从而避免了从显式模型推导梯度的繁琐任务。网络动态。该网络包含六个具有连续时间动态变化的完全复发神经元,提供42个自由参数,其中包括连接强度和阈值。实施网络的芯片包括支持参数学习和参数存储的本地配置,并集成在可伸缩体系结构中,该体系结构可以很容易地扩展为学习需要更大维度的循环动态网络的应用。我们描述并描述了包括已实现的递归网络和集成学习系统在内的功能元素,并包括了通过训练网络来表示正交相位振荡器而获得的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号