首页> 外文期刊>IEEE Transactions on Neural Networks >Nonlinear control structures based on embedded neural system models
【24h】

Nonlinear control structures based on embedded neural system models

机译:基于嵌入式神经系统模型的非线性控制结构

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates in detail the possible application of neural networks to the modeling and adaptive control of nonlinear systems. Nonlinear neural-network-based plant modeling is first discussed, based on the approximation capabilities of the multilayer perceptron. A structure is then proposed to utilize feedforward networks within a direct model reference adaptive control strategy. The difficulties involved in training this network, embedded within the closed-loop are discussed and a novel neural-network-based sensitivity modeling approach proposed to allow for the backpropagation of errors through the plant to the neural controller. Finally, a novel nonlinear internal model control (IMC) strategy is suggested, that utilizes a nonlinear neural model of the plant to generate parameter estimates over the nonlinear operating region for an adaptive linear internal model, without the problems associated with recursive parameter identification algorithms. Unlike other neural IMC approaches the linear control law can then be readily designed. A continuous stirred tank reactor was chosen as a realistic nonlinear case study for the techniques discussed in the paper.
机译:本文详细研究了神经网络在非线性系统建模和自适应控制中的可能应用。首先,基于多层感知器的逼近能力,讨论了基于非线性神经网络的植物建模。然后提出一种在直接模型参考自适应控制策略内利用前馈网络的结构。讨论了嵌入闭环内的训练该网络所涉及的困难,并提出了一种新颖的基于神经网络的灵敏度建模方法,以允许通过植物向神经控制器进行错误的反向传播。最后,提出了一种新颖的非线性内部模型控制(IMC)策略,该策略利用工厂的非线性神经模型为自适应线性内部模型在非线性操作区域上生成参数估计,而没有与递归参数识别算法相关的问题。与其他神经IMC方法不同,可以轻松设计线性控制律。对于本文讨论的技术,选择连续搅拌釜反应器作为现实的非线性案例研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号