首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >EFFICIENT NONLINEAR PREDICTIVE CONTROL BASED ON STRUCTURED NEURAL MODELS
【24h】

EFFICIENT NONLINEAR PREDICTIVE CONTROL BASED ON STRUCTURED NEURAL MODELS

机译:基于结构神经模型的有效非线性预测控制

获取原文
获取原文并翻译 | 示例

摘要

This paper describes structured neural models and a computationally efficient (suboptimal) nonlinear Model Predictive Control (MPC) algorithm based on such models. The structured neural model has the ability to make future predictions of the process without being used recursively. Thanks to the nature of the model, the prediction error is not propagated. This is particularly important in the case of noise and underparameterisation. Structured models have much better long-range prediction accuracy than the corresponding classical Nonlinear Auto Regressive with external input (NARX) models. The described suboptimal MPC algorithm needs solving on-line only a quadratic programming problem. Nevertheless, it gives closed-loop control performance similar to that obtained in fully-fledged nonlinear MPC, which hinges on online nonconvex optimisation. In order to demonstrate the advantages of structured models as well as the accuracy of the suboptimal MPC algorithm, a polymerisation reactor is studied.
机译:本文介绍了结构化神经模型和基于此类模型的计算效率高(次优)的非线性模型预测控制(MPC)算法。结构化的神经模型能够对过程进行未来的预测,而无需递归使用。由于模型的性质,预测误差不会传播。这在噪声和参数不足的情况下尤其重要。与相应的经典外部输入非线性自动回归(NARX)模型相比,结构化模型具有更好的远程预测精度。所描述的次优MPC算法仅需要在线解决二次编程问题。但是,它提供的闭环控制性能与完全基于非线性非优化的完全成熟的非线性MPC相似。为了证明结构化模型的优点以及次优MPC算法的准确性,对聚合反应器进行了研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号