首页> 外文期刊>Neurocomputing >Computationally efficient nonlinear predictive control based on neural Wiener models
【24h】

Computationally efficient nonlinear predictive control based on neural Wiener models

机译:基于神经维纳模型的计算有效非线性预测控制

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a computationally efficient nonlinear model predictive control (MPC) algorithm based on neural Wiener models and its application. The model contains a linear dynamic part in series with a steady-state nonlinear part which is realised by a neural network. In the presented MPC algorithm the model is linearised on-line, as a result the future control policy is easily calculated from a quadratic programming problem. The algorithm gives control performance similar to that obtained in fully fledged nonlinear MPC, which hinges on non-convex optimisation. In order to demonstrate the accuracy and the computational efficiency of the considered MPC algorithm a polymerisation process is studied.
机译:本文介绍了一种基于神经维纳模型的高效计算非线性模型预测控制(MPC)算法及其应用。该模型包含一个线性动态部分和一个由神经网络实现的稳态非线性部分。在提出的MPC算法中,模型是在线线性化的,因此可以轻松地从二次规划问题中计算出未来的控制策略。该算法的控制性能与完全基于非线性优化的完全成熟的非线性MPC相似。为了证明所考虑的MPC算法的准确性和计算效率,研究了聚合过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号