首页> 外文期刊>IEEE Transactions on Neural Networks >Constructive algorithms for structure learning in feedforward neural networks for regression problems
【24h】

Constructive algorithms for structure learning in feedforward neural networks for regression problems

机译:前馈神经网络中用于回归问题的结构学习的构造算法

获取原文
获取原文并翻译 | 示例

摘要

In this survey paper, we review the constructive algorithms for structure learning in feedforward neural networks for regression problems. The basic idea is to start with a small network, then add hidden units and weights incrementally until a satisfactory solution is found. By formulating the whole problem as a state-space search, we first describe the general issues in constructive algorithms, with special emphasis on the search strategy. A taxonomy, based on the differences in the state transition mapping, the training algorithm, and the network architecture, is then presented.
机译:在这篇调查论文中,我们回顾了前馈神经网络中用于回归问题的结构学习的构造算法。基本思想是从一个小型网络开始,然后逐步添加隐藏的单位和权重,直到找到满意的解决方案。通过将整个问题表述为状态空间搜索,我们首先描述了构造算法中的一般问题,特别着重于搜索策略。然后根据状态转换映射,训练算法和网络体系结构的差异,提出分类法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号