首页> 外文期刊>Neurocomputing >A constructive algorithm to synthesize arbitrarily connected feedforward neural networks
【24h】

A constructive algorithm to synthesize arbitrarily connected feedforward neural networks

机译:构造任意连接的前馈神经网络的构造算法

获取原文
获取原文并翻译 | 示例

摘要

In this work we present a constructive algorithm capable of producing arbitrarily connected feedforward neural network architectures for classification problems. Architecture and synaptic weights of the neural network should be defined by the learning procedure. The main purpose is to obtain a parsimonious neural network, in the form of a hybrid and dedicate linearonlinear classification model, which can guide to high levels of performance in terms of generalization. Though not being a global optimization algorithm, nor a population-based metaheuristics, the constructive approach has mechanisms to avoid premature convergence, by mixing growing and pruning processes, and also by implementing a relaxation strategy for the learning error. The synaptic weights of the neural networks produced by the constructive mechanism are adjusted by a quasi-Newton method, and the decision to grow or prune the current network is based on a mutual information criterion. A set of benchmark experiments, including artificial and real datasets, indicates that the new proposal presents a favorable performance when compared with alternative approaches in the literature, such as traditional MLP, mixture of heterogeneous experts, cascade correlation networks and an evolutionary programming system, in terms of both classification accuracy and parsimony of the obtained classifier.
机译:在这项工作中,我们提出了一种能够产生用于分类问题的任意连接的前馈神经网络体系结构的构造算法。神经网络的结构和突触权重应通过学习过程来定义。主要目的是获得混合和专用线性/非线性分类模型形式的简约神经网络,该模型可以在泛化方面指导较高的性能。尽管既不是全局优化算法,也不是基于总体的元启发式算法,但是该构造方法具有通过混合增长和修剪过程以及通过针对学习错误实施松弛策略来避免过早收敛的机制。由构造机制产生的神经网络的突触权重通过准牛顿法进行调整,并且根据共同的信息标准决定是否增长或修剪当前网络。一组基准实验(包括人工和真实数据集)表明,与传统MLP,异类专家的混合,级联相关网络和进化规划系统等文献中的替代方法相比,该新提议具有更好的性能。获得的分类器的分类精度和简约性两个方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号