首页> 外文期刊>IEEE Transactions on Neural Networks >Multiple neural-network-based adaptive controller using orthonormal activation function neural networks
【24h】

Multiple neural-network-based adaptive controller using orthonormal activation function neural networks

机译:基于正交激活函数神经网络的基于多神经网络的自适应控制器

获取原文
获取原文并翻译 | 示例

摘要

A direct adaptive control scheme is developed using orthonormal activation function-based neural networks (OAFNNs) for trajectory tracking control of a class of nonlinear systems. Multiple OAFNNs are employed in these controllers for feedforward compensation of unknown system dynamics. Choice of multiple OAFNNs allows a reduction in overall network size reducing the computational requirements. The network weights are tuned online, in real time. The overall stability of the system and the neural networks is guaranteed using Lyapunov analysis. The developed neural controllers are evaluated experimentally and the experimental results are shown to support theoretical analysis. The effects of network parameters on system performance are experimentally evaluated and are presented. The superior learning capability of OAFNNs is demonstrated through experimental results. The OAFNNs were able to model the true nature of the nonlinear system dynamics characteristics for a rolling-sliding contact as well as for stiction.
机译:使用基于正交激活函数的神经网络(OAFNN)开发了一种直接自适应控制方案,用于一类非线性系统的轨迹跟踪控制。在这些控制器中采用了多个OAFNN,以对未知系统动态进行前馈补偿。选择多个OAFNN可以减少整个网络的大小,从而降低计算需求。网络权重是实时在线调整的。使用Lyapunov分析可确保系统和神经网络的整体稳定性。对开发的神经控制器进行了实验评估,并显示了实验结果以支持理论分析。实验评估并介绍了网络参数对系统性能的影响。实验结果证明了OAFNNs的卓越学习能力。 OAFNN能够为滚动-滑动接触以及静摩擦建模非线性系统动力学特性的真实性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号