首页> 外文期刊>IEEE Transactions on Neural Networks >Task decomposition and module combination based on class relations: a modular neural network for pattern classification
【24h】

Task decomposition and module combination based on class relations: a modular neural network for pattern classification

机译:基于类关系的任务分解和模块组合:用于模式分类的模块化神经网络

获取原文
获取原文并翻译 | 示例

摘要

We propose a method for decomposing pattern classification problems based on the class relations among training data. By using this method, we can divide a K-class classification problem into a series of (/sub 2//sup K/) two-class problems. These two-class problems are to discriminate class C/sub i/ from class C/sub j/ for i=1, ..., K and j=i+1, while the existence of the training data belonging to the other K-2 classes is ignored. If the two-class problem of discriminating class C/sub i/ from class C/sub j/ is still hard to be learned, we can further break down it into a set of two-class subproblems as small as we expect. Since each of the two-class problems can be treated as a completely separate classification problem with the proposed learning framework, all of the two-class problems can be learned in parallel. We also propose two module combination principles which give practical guidelines in integrating individual trained network modules. After learning of each of the two-class problems with a network module, we can easily integrate all of the trained modules into a min-max modular (M/sup 3/) network according to the module combination principles and obtain a solution to the original problem. Consequently, a large-scale and complex K-class classification problem can be solved effortlessly and efficiently by learning a series of smaller and simpler two-class problems in parallel.
机译:我们提出了一种基于训练数据之间的类关系分解模式分类问题的方法。通过使用此方法,我们可以将K类分类问题分为一系列(/ sub 2 // sup K /)两类问题。这两个问题是针对i = 1,...,K和j = i + 1区分C / sub i /和C / sub j /类,而存在属于另一个K的训练数据-2类被忽略。如果仍然很难学习将C / sub i /和C / sub j /区别开来的两类问题,我们可以将其进一步分解为与我们期望的一样小的两类子问题。由于使用所提出的学习框架,每个两类问题都可以视为完全独立的分类问题,因此可以并行学习所有两类问题。我们还提出了两种模块组合原则,这些原则为集成受过训练的网络模块提供了实用指南。在学习了网络模块的两类问题后,我们可以根据模块组合原理轻松地将所有受过训练的模块集成到最小-最大模块化(M / sup 3 /)网络中,并找到解决方案。原来的问题。因此,通过并行学习一系列较小和较简单的两类问题,可以轻松有效地解决大规模且复杂的K类分类问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号