首页> 外文会议>Biological and artificial computation : From neurosciene to technology >Task Decomposition Based on Class Relations: A Modular Neural Network Architecture for Pattern Classification
【24h】

Task Decomposition Based on Class Relations: A Modular Neural Network Architecture for Pattern Classification

机译:基于类关系的任务分解:用于模式分类的模块化神经网络架构

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new methodology for decomposing pattern classification problems based on the class relations among training data. We also propose two combination principles for integrating individual modules to solve the original problem. By using the decomposition methodology, we can divide a K-class classification problem into (k/2) relatively smaller two-class classification problems. If the twoclass problems are still hard to be learned, we can further break down them into a set of smaller and simpler two-class problems. Each of the two-class problem can be learned by a modular network independently. After learning, we can easily integrate all of the modules according to the combination principles to get the solution of the original problem. Consequently, a K-class classification problem can be solved effortlessly by learning a set of smaller and simpler two-class classification problems in parallel.
机译:在本文中,我们提出了一种基于训练数据之间的类关系分解模式分类问题的新方法。我们还提出了两种组合原则,用于集成单个模块以解决原始问题。通过使用分解方法,我们可以将K类分类问题分为(k / 2)个相对较小的两类分类问题。如果仍然很难学习两类问题,我们可以将它们进一步分解为一组更小,更简单的两类问题。两类问题中的每一个都可以由模块化网络独立学习。学习之后,我们可以轻松地根据组合原理将所有模块集成在一起,以解决原始问题。因此,通过并行学习一组更小,更简单的两类分类问题,可以轻松解决K类分类问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号