首页> 外文期刊>IEEE Transactions on Neural Networks >Real-time computing platform for spiking neurons (RT-spike)
【24h】

Real-time computing platform for spiking neurons (RT-spike)

机译:尖峰神经元的实时计算平台(RT尖峰)

获取原文
获取原文并翻译 | 示例

摘要

A computing platform is described for simulating arbitrary networks of spiking neurons in real time. A hybrid computing scheme is adopted that uses both software and hardware components to manage the tradeoff between flexibility and computational power; the neuron model is implemented in hardware and the network model and the learning are implemented in software. The incremental transition of the software components into hardware is supported. We focus on a spike response model (SRM) for a neuron where the synapses are modeled as input-driven conductances. The temporal dynamics of the synaptic integration process are modeled with a synaptic time constant that results in a gradual injection of charge. This type of model is computationally expensive and is not easily amenable to existing software-based event-driven approaches. As an alternative we have designed an efficient time-based computing architecture in hardware, where the different stages of the neuron model are processed in parallel. Further improvements occur by computing multiple neurons in parallel using multiple processing units. This design is tested using reconfigurable hardware and its scalability and performance evaluated. Our overall goal is to investigate biologically realistic models for the real-time control of robots operating within closed action-perception loops, and so we evaluate the performance of the system on simulating a model of the cerebellum where the emulation of the temporal dynamics of the synaptic integration process is important.
机译:描述了一种用于实时模拟尖峰神经元的任意网络的计算平台。采用了一种混合计算方案,该方案同时使用软件和硬件组件来管理灵活性和计算能力之间的折衷。神经元模型用硬件实现,网络模型和学习用软件实现。支持将软件组件逐步转换为硬件。我们专注于神经元的突波反应模型(SRM),其中突触被建模为输入驱动的电导。突触整合过程的时间动态是用突触时间常数建模的,该常数导致电荷的逐渐注入。这种类型的模型在计算上很昂贵,并且不容易适应现有的基于软件的事件驱动方法。作为替代方案,我们在硬件中设计了一种有效的基于时间的计算体系结构,其中并行处理神经元模型的不同阶段。通过使用多个处理单元并行计算多个神经元,可以实现进一步的改进。使用可重新配置的硬件对该设计进行了测试,并评估了其可扩展性和性能。我们的总体目标是研究生物学上逼真的模型,以便在封闭的动作感知回路内实时控制机器人,因此,我们在模拟小脑模型时评估了系统的性能,在该模型中仿真小脑的时间动态。突触整合过程很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号