首页> 外文期刊>Artificial life and robotics >Spike pattern recognition using artificial neuron and spike-timing- dependent plasticity implemented on a multi-core embedded platform
【24h】

Spike pattern recognition using artificial neuron and spike-timing- dependent plasticity implemented on a multi-core embedded platform

机译:在多核嵌入式平台上使用人工神经元和依赖于峰值定时的可塑性实现峰值模式识别

获取原文
获取原文并翻译 | 示例

摘要

The objective of this work is to use a multi-core embedded platform as computing architectures for neural applications relevant to neuromorphic engineering: e.g., robotics, and artificial and spiking neural networks. Recently, it has been shown how spike-timing-dependent plasticity (STDP) can play a key role in pattern recognition. In particular, multiple repeating arbitrary spatio-temporal spike patterns hidden in spike trains can be robustly detected and learned by multiple neurons equipped with spike-timing-dependent plasticity listening to the incoming spike trains. This paper presents an implementation on a biological time scale of STDP algorithm to localize a repeating spatio-temporal spike patterns on a multi-core embedded platform.
机译:这项工作的目的是使用多核嵌入式平台作为与神经形态工程有关的神经应用程序的计算架构,例如机器人技术以及人工和尖峰神经网络。最近,已经显示出依赖于穗定时的可塑性(STDP)如何在模式识别中发挥关键作用。特别是,隐藏在峰值序列中的多个重复的任意时空峰值模式可以通过侦听传入的峰值序列的具有依赖于峰值时序的可塑性的多个神经元来可靠地检测和学习。本文提出了一种在生物时间尺度上的STDP算法实现,以在多核嵌入式平台上定位重复的时空峰值模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号