首页> 外文期刊>IEEE Transactions on Neural Networks >Self-Organizing Radial Basis Function Network for Real-Time Approximation of Continuous-Time Dynamical Systems
【24h】

Self-Organizing Radial Basis Function Network for Real-Time Approximation of Continuous-Time Dynamical Systems

机译:连续动力系统实时逼近的自组织径向基函数网络

获取原文
获取原文并翻译 | 示例

摘要

Real-time approximators for continuous-time dynamical systems with many inputs are presented. These approximators employ a novel self-organizing radial basis function (RBF) network, which varies its structure dynamically to keep the prescribed approximation accuracy. The RBFs can be added or removed online in order to achieve the appropriate network complexity for the real-time approximation of the dynamical systems and to maintain the overall computational efficiency. The performance of this variable structure RBF network approximator with both Gaussian RBF (GRBF) and raised-cosine RBF (RCRBF) is analyzed. The compact support of RCRBF enables faster training and easier output evaluation of the network than that of the network with GRBF. The proposed real-time self-organizing RBF network approximator is then employed to approximate both linear and nonlinear dynamical systems to illustrate the effectiveness of our proposed approximation scheme, especially for higher order dynamical systems. The uniform ultimate boundedness of the approximation error is proved using the second method of Lyapunov.
机译:提出了具有多个输入的连续动态系统的实时逼近器。这些逼近器采用了新颖的自组织径向基函数(RBF)网络,该网络会动态改变其结构以保持规定的逼近精度。可以在线添加或删除RBF,以便为动态系统的实时逼近实现适当的网络复杂性,并保持总体计算效率。分析了具有高斯RBF(GRBF)和凸余弦RBF(RCRBF)的这种可变结构RBF网络逼近器的性能。与带有GRBF的网络相比,RCRBF的紧凑支持使网络的训练更快,输出评估更容易。然后采用提出的实时自组织RBF网络逼近器来逼近线性和非线性动力学系统,以说明我们提出的逼近方案的有效性,尤其是对于高阶动力学系统。使用Lyapunov的第二种方法证明了逼近误差的一致最终有界性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号