首页> 美国卫生研究院文献>Springer Open Choice >Research on an online self-organizing radial basis function neural network
【2h】

Research on an online self-organizing radial basis function neural network

机译:在线自组织径向基函数神经网络的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new growing and pruning algorithm is proposed for radial basis function (RBF) neural network structure design in this paper, which is named as self-organizing RBF (SORBF). The structure of the RBF neural network is introduced in this paper first, and then the growing and pruning algorithm is used to design the structure of the RBF neural network automatically. The growing and pruning approach is based on the radius of the receptive field of the RBF nodes. Meanwhile, the parameters adjusting algorithms are proposed for the whole RBF neural network. The performance of the proposed method is evaluated through functions approximation and dynamic system identification. Then, the method is used to capture the biochemical oxygen demand (BOD) concentration in a wastewater treatment system. Experimental results show that the proposed method is efficient for network structure optimization, and it achieves better performance than some of the existing algorithms.
机译:提出了一种用于径向基函数(RBF)神经网络结构设计的新的修剪算法,称为自组织RBF(SORBF)。首先介绍了RBF神经网络的结构,然后使用增长和修剪算法自动设计了RBF神经网络的结构。生长和修剪方法基于RBF节点的接收场的半径。同时,针对整个RBF神经网络提出了参数调整算法。通过函数逼近和动态系统辨识来评估所提出方法的性能。然后,该方法用于捕获废水处理系统中的生化需氧量(BOD)浓度。实验结果表明,所提出的方法对于网络结构优化是有效的,并且比某些现有算法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号