首页> 外文期刊>Neural Networks, IEEE Transactions on >Adaptive Neural Control for a Class of Nonlinear Systems With Uncertain Hysteresis Inputs and Time-Varying State Delays
【24h】

Adaptive Neural Control for a Class of Nonlinear Systems With Uncertain Hysteresis Inputs and Time-Varying State Delays

机译:一类具有不确定磁滞输入和时变状态时滞的非线性系统的自适应神经控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, adaptive variable structure neural control is investigated for a class of nonlinear systems under the effects of time-varying state delays and uncertain hysteresis inputs. The unknown time-varying delay uncertainties are compensated for using appropriate Lyapunov–Krasovskii functionals in the design, and the effect of the uncertain hysteresis with the Prandtl–Ishlinskii (PI) model representation is also mitigated using the proposed control. By utilizing the integral-type Lyapunov function, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded (SGUUB). Extensive simulation results demonstrate the effectiveness of the proposed approach.
机译:本文研究了时变状态时滞和不确定磁滞输入影响下的一类非线性系统的自适应变结构神经控制。在设计中使用适当的Lyapunov-Krasovskii函数可以补偿未知的时变延迟不确定性,并且使用建议的控件还可以减轻Prandtl-Ishlinskii(PI)模型表示的不确定磁滞的影响。通过利用积分型Lyapunov函数,证明了该闭环控制系统是半全局一致的最终有界(SGUUB)。大量的仿真结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号