首页> 外文期刊>Neurocomputing >Adaptive neural tracking control for a class of uncertain switched nonlinear systems with unknown backlash-like hysteresis control input
【24h】

Adaptive neural tracking control for a class of uncertain switched nonlinear systems with unknown backlash-like hysteresis control input

机译:一类带有未知反冲样磁滞控制输入的不确定非线性切换系统的自适应神经跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the problem of adaptive tracking control for a class of uncertain switched nonlinear systems. Completely unknown backlash-like hysteresis control input that frequently exists in practice is also considered. By combining adaptive backstepping technique with neural networks approximation ability, an adaptive neural control algorithm is presented for the systems under consideration. A common virtual control function is deigned to construct a common Lyapunov function for the system. The explosion of complexity in traditional backstepping design is avoided by using dynamic surface control. It is demonstrated that the practical output tracking performance is achieved by using the proposed state-feedback controllers, and all the signals remain bounded. Finally, simulation results are given to show the effectiveness of the theoretical approaches.
机译:本文涉及一类不确定的非线性切换系统的自适应跟踪控制问题。还考虑了实践中经常存在的完全未知的类似反冲的磁滞控制输入。通过将自适应反步技术与神经网络逼近能力相结合,针对所考虑的系统提出了一种自适应神经控制算法。设计通用的虚拟控制功能以构造系统的通用Lyapunov功能。通过使用动态表面控制,避免了传统后推设计中复杂性的激增。结果表明,使用提出的状态反馈控制器可以实现实际的输出跟踪性能,并且所有信号都保持有界。最后,仿真结果表明了理论方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号