首页> 外文期刊>Neural Networks, IEEE Transactions on >Optimization Methods for Spiking Neurons and Networks
【24h】

Optimization Methods for Spiking Neurons and Networks

机译:刺激神经元和网络的优化方法

获取原文
获取原文并翻译 | 示例

摘要

Spiking neurons and spiking neural circuits are finding uses in a multitude of tasks such as robotic locomotion control, neuroprosthetics, visual sensory processing, and audition. The desired neural output is achieved through the use of complex neuron models, or by combining multiple simple neurons into a network. In either case, a means for configuring the neuron or neural circuit is required. Manual manipulation of parameters is both time consuming and non-intuitive due to the nonlinear relationship between parameters and the neuron's output. The complexity rises even further as the neurons are networked and the systems often become mathematically intractable. In large circuits, the desired behavior and timing of action potential trains may be known but the timing of the individual action potentials is unknown and unimportant, whereas in single neuron systems the timing of individual action potentials is critical. In this paper, we automate the process of finding parameters. To configure a single neuron we derive a maximum likelihood method for configuring a neuron model, specifically the Mihalas-Niebur Neuron. Similarly, to configure neural circuits, we show how we use genetic algorithms (GAs) to configure parameters for a network of simple integrate and fire with adaptation neurons. The GA approach is demonstrated both in software simulation and hardware implementation on a reconfigurable custom very large scale integration chip.
机译:尖刺神经元和尖刺神经回路正在许多任务中找到用途,例如机器人运动控制,神经修复,视觉感觉处理和听觉。通过使用复杂的神经元模型,或通过将多个简单的神经元组合到网络中,可以实现所需的神经输出。无论哪种情况,都需要一种用于配置神经元或神经回路的装置。由于参数与神经元输出之间的非线性关系,手动操作参数既耗时又不直观。随着神经元联网,系统的复杂性甚至进一步提高,并且系统通常在数学上变得难以处理。在大型电路中,动作电位序列的期望行为和时机可能是已知的,但单个动作电位的时机未知且不重要,而在单个神经元系统中,单个动作电位的时机至关重要。在本文中,我们使参数查找过程自动化。为了配置单个神经元,我们导出了用于配置神经元模型(特别是Mihalas-Niebur神经元)的最大似然方法。类似地,要配置神经回路,我们将展示如何使用遗传算法(GA)来为简单的集成网络和自适应神经元触发网络配置参数。 GA方法在可重配置的定制超大规模集成芯片上的软件仿真和硬件实现中得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号