首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Selection and Optimization of Temporal Spike Encoding Methods for Spiking Neural Networks
【24h】

Selection and Optimization of Temporal Spike Encoding Methods for Spiking Neural Networks

机译:尖峰神经网络的时间尖峰编码方法的选择和优化

获取原文
获取原文并翻译 | 示例

摘要

Spiking neural networks (SNNs) receive trains of spiking events as inputs. In order to design efficient SNN systems, real-valued signals must be optimally encoded into spike trains so that the task-relevant information is retained. This paper provides a systematic quantitative and qualitative analysis and guidelines for optimal temporal encoding. It proposes a methodology of a three-step encoding workflow: method selection by signal characteristics, parameter optimization by error metrics between original and reconstructed signals, and validation by comparison of the original signal and the encoded spike train. Four encoding methods are analyzed: one stimulus estimation [Ben's Spiker algorithm (BSA)] and three temporal contrast [threshold-based, step-forward (SW), and moving-window (MW)] encodings. A short theoretical analysis is provided, and the extended quantitative analysis is carried out applying four types of test signals: step-wise signal, smooth (sinusoid) signal with added noise, trended smooth signal, and event-like smooth signal. Various time-domain and frequency spectrum properties are explored, and a comparison is provided. BSA, the only method providing unipolar spikes, was shown to be ineffective for step-wise signals, but it can follow smoothly changing signals if filter coefficients are scaled appropriately. Producing bipolar (positive and negative) spike trains, SW encoding was most effective for all types of signals as it proved to be robust and easy to optimize. Signal-to-noise ratio (SNR) can be recommended as the error metric for parameter optimization. Currently, only a visual check is available for final validation.
机译:尖峰神经网络(SNN)接收一系列尖峰事件作为输入。为了设计有效的SNN系统,必须将实值信号最佳编码为尖峰序列,以便保留与任务相关的信息。本文为最佳的时间编码提供了系统的定量和定性分析和指南。它提出了一种三步编码工作流程的方法:通过信号特征进行方法选择,通过原始信号和重构信号之间的误差度量进行参数优化以及通过比较原始信号和编码后的尖峰序列进行验证。分析了四种编码方法:一种刺激估计[Ben's Spiker算法(BSA)]和三种时间对比度[基于阈值,步进(SW)和移动窗口(MW)]编码。提供了简短的理论分析,并使用四种类型的测试信号进行了扩展的定量分析:逐步信号,添加了噪声的平滑(正弦)信号,趋势平滑信号和类似事件的平滑信号。探索了各种时域和频谱属性,并提供了比较。 BSA是唯一提供单极性尖峰的方法,对步进信号无效,但如果适当地缩放滤波器系数,它可以跟随平滑变化的信号。产生双极(正和负)尖峰序列,SW编码对于所有类型的信号都是最有效的,因为它被证明是鲁棒的并且易于优化。可以将信噪比(SNR)推荐为参数优化的误差指标。当前,只有视觉检查可用于最终验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号