首页> 外文期刊>Neural Networks, IEEE Transactions on >Continuous Attractors of Lotka–Volterra Recurrent Neural Networks With Infinite Neurons
【24h】

Continuous Attractors of Lotka–Volterra Recurrent Neural Networks With Infinite Neurons

机译:具有无限神经元的Lotka–Volterra递归神经网络的连续吸引子

获取原文
获取原文并翻译 | 示例

摘要

Continuous attractors of Lotka–Volterra recurrent neural networks (LV RNNs) with infinite neurons are studied in this brief. A continuous attractor is a collection of connected equilibria, and it has been recognized as a suitable model for describing the encoding of continuous stimuli in neural networks. The existence of the continuous attractors depends on many factors such as the connectivity and the external inputs of the network. A continuous attractor can be stable or unstable. It is shown in this brief that a LV RNN can possess multiple continuous attractors if the synaptic connections and the external inputs are Gussian-like in shape. Moreover, both stable and unstable continuous attractors can coexist in a network. Explicit expressions of the continuous attractors are calculated. Simulations are employed to illustrate the theory.
机译:在此简要介绍了具有无限神经元的Lotka–Volterra递归神经网络(LV RNN)的连续吸引子。连续吸引子是连接平衡的集合,已经被认为是描述神经网络中连续刺激编码的合适模型。连续吸引子的存在取决于许多因素,例如网络的连通性和外部输入。连续吸引子可以是稳定的或不稳定的。在此摘要中表明,如果突触连接和外部输入的形状像古斯型,LV RNN可以拥有多个连续的吸引子。而且,稳定和不稳定的连续吸引子都可以共存于网络中。计算连续吸引子的显式表达式。通过仿真来说明该理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号