首页> 外文期刊>Neural Networks, IEEE Transactions on >Discriminative Semi-Supervised Feature Selection Via Manifold Regularization
【24h】

Discriminative Semi-Supervised Feature Selection Via Manifold Regularization

机译:通过流形正则化进行区分半监督特征选择

获取原文
获取原文并翻译 | 示例

摘要

Feature selection has attracted a huge amount of interest in both research and application communities of data mining. We consider the problem of semi-supervised feature selection, where we are given a small amount of labeled examples and a large amount of unlabeled examples. Since a small number of labeled samples are usually insufficient for identifying the relevant features, the critical problem arising from semi-supervised feature selection is how to take advantage of the information underneath the unlabeled data. To address this problem, we propose a novel discriminative semi-supervised feature selection method based on the idea of manifold regularization. The proposed approach selects features through maximizing the classification margin between different classes and simultaneously exploiting the geometry of the probability distribution that generates both labeled and unlabeled data. In comparison with previous semi-supervised feature selection algorithms, our proposed semi-supervised feature selection method is an embedded feature selection method and is able to find more discriminative features. We formulate the proposed feature selection method into a convex-concave optimization problem, where the saddle point corresponds to the optimal solution. To find the optimal solution, the level method, a fairly recent optimization method, is employed. We also present a theoretic proof of the convergence rate for the application of the level method to our problem. Empirical evaluation on several benchmark data sets demonstrates the effectiveness of the proposed semi-supervised feature selection method.
机译:特征选择在数据挖掘的研究和应用社区中引起了极大的兴趣。我们考虑了半监督特征选择的问题,其中给了我们少量的标记示例和大量的未标记示例。由于少量标记的样本通常不足以识别相关特征,因此半监督特征选择引起的关键问题是如何利用未标记数据下的信息。为了解决这个问题,我们提出了一种基于流形正则化的判别半监督特征选择方法。所提出的方法通过最大化不同类别之间的分类裕度并同时利用生成标记和未标记数据的概率分布的几何形状来选择特征。与以前的半监督特征选择算法相比,我们提出的半监督特征选择方法是一种嵌入式特征选择方法,能够发现更多判别特征。我们将提出的特征选择方法公式化为凸凹优化问题,其中鞍点对应于最优解。为了找到最佳解决方案,采用了一种最新的优化方法-水平法。我们还提供了收敛速度的理论证明,用于将水平方法应用于我们的问题。对几个基准数据集的经验评估证明了所提出的半监督特征选择方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号