首页> 外文期刊>Neurocomputing >Semi-supervised feature selection based on local discriminative information
【24h】

Semi-supervised feature selection based on local discriminative information

机译:基于局部判别信息的半监督特征选择

获取原文
获取原文并翻译 | 示例

摘要

Feature selection has been an effective way to reduce the dimensionality of the high dimensional data. In this paper, we propose a novel feature selection method which achieves batch feature selection using both supervised and unsupervised data samples. The objective function includes three parts: first, under the assumption that each data sample has been assigned a class label, the ratio of between class scatter matrix and total scatter matrix should be minimized, where the scatter matrices are formed by the selected features of these data samples; second, we use linear regressioh to model the correlations between the data samples with supervision information and their class labels; last, we use l(2,1)-norm to guarantee the sparsity of the feature selection matrix and exploit the sharing information between supervised and unsupervised data samples jointly. Different from existing methods, our approach exploits local discriminative information to construct the model, therefore we obtain better results from extensive experiments compared with the existing methods. (C) 2015 Elsevier B.V. All rights reserved.
机译:特征选择已成为减少高维数据维数的有效方法。在本文中,我们提出了一种新颖的特征选择方法,该方法使用监督数据样本和无监督数据样本来实现批量特征选择。目标函数包括三个部分:首先,假设已为每个数据样本分配了一个类别标签,则类别散布矩阵和总散布矩阵之间的比率应最小化,其中散布矩阵由这些特征的选定特征形成数据样本;其次,我们使用线性回归对具有监督信息的数据样本及其类别标签之间的相关性进行建模。最后,我们使用l(2,1)-范数来保证特征选择矩阵的稀疏性,并共同利用有监督和无监督数据样本之间的共享信息。与现有方法不同,我们的方法利用本地判别信息来构建模型,因此与现有方法相比,我们通过广泛的实验获得了更好的结果。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号