首页> 外文期刊>Neural Networks, IEEE Transactions on >A Convolutional Learning System for Object Classification in 3-D Lidar Data
【24h】

A Convolutional Learning System for Object Classification in 3-D Lidar Data

机译:用于3D激光雷达数据目标分类的卷积学习系统

获取原文
获取原文并翻译 | 示例

摘要

In this brief, a convolutional learning system for classification of segmented objects represented in 3-D as point clouds of laser reflections is proposed. Several novelties are discussed: (1) extension of the existing convolutional neural network (CNN) framework to direct processing of 3-D data in a multiview setting which may be helpful for rotation-invariant consideration, (2) improvement of CNN training effectiveness by employing a stochastic meta-descent (SMD) method, and (3) combination of unsupervised and supervised training for enhanced performance of CNN. CNN performance is illustrated on a two-class data set of objects in a segmented outdoor environment.
机译:在此简介中,提出了一种卷积学习系统,用于对以3D表示为激光反射点云的分割对象进行分类。讨论了几种新颖性:(1)将现有的卷积神经网络(CNN)框架扩展为在多视图环境中直接处理3-D数据,这可能有助于旋转不变性的考虑;(2)通过提高CNN训练的有效性(3)采用无监督训练和无监督训练相结合的方法,以提高CNN的性能。在分段室外环境中,两类对象的数据集说明了CNN的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号