首页> 外文期刊>Neural Networks, IEEE Transactions on >Decentralized Dynamic Surface Control of Large-Scale Interconnected Systems in Strict-Feedback Form Using Neural Networks With Asymptotic Stabilization
【24h】

Decentralized Dynamic Surface Control of Large-Scale Interconnected Systems in Strict-Feedback Form Using Neural Networks With Asymptotic Stabilization

机译:使用渐近稳定神经网络的严格反馈形式的大型互连系统的分散动态表面控制

获取原文
获取原文并翻译 | 示例

摘要

A novel neural network (NN)-based nonlinear decentralized adaptive controller is proposed for a class of large-scale, uncertain, interconnected nonlinear systems in strict-feedback form by using the dynamic surface control (DSC) principle, thus, the “explosion of complexity” problem which is observed in the conventional backstepping approach is relaxed in both state and output feedback control designs. The matching condition is not assumed when considering the interconnection terms. Then, NNs are utilized to approximate the uncertainties in both subsystem and interconnected terms. By using novel NN weight update laws with quadratic error terms as well as proposed control inputs, it is demonstrated using Lyapunov stability that the system states errors converge to zero asymptotically with both state and output feedback controllers, even in the presence of NN approximation errors in contrast with the uniform ultimate boundedness result, which is common in the literature with NN-based DSC and backstepping schemes. Simulation results show the effectiveness of the approach.
机译:利用动态表面控制(DSC)原理,针对严格反馈形式的一类大规模,不确定,互连的非线性系统,提出了一种基于神经网络的新型非线性分散自适应控制器。在状态和输出反馈控制设计中,传统反推方法中观察到的“复杂性”问题得到了缓解。考虑互连条件时不考虑匹配条件。然后,利用神经网络对子系统和互连项中的不确定性进行近似。通过使用具有二次误差项的新颖的NN权重更新定律以及建议的控制输入,使用Lyapunov稳定性证明了即使在存在NN近似误差的情况下,系统状态误差也可以通过状态和输出反馈控制器渐近收敛到零。与统一的最终有界结果相反,这在文献中使用基于NN的DSC和反推方案是很常见的。仿真结果表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号