首页> 外文期刊>Neural Networks, IEEE Transactions on >LMI-Based Approach for Global Asymptotic Stability Analysis of Recurrent Neural Networks with Various Delays and Structures
【24h】

LMI-Based Approach for Global Asymptotic Stability Analysis of Recurrent Neural Networks with Various Delays and Structures

机译:基于LMI的具有不同时滞和结构的递归神经网络全局渐近稳定性分析方法

获取原文
获取原文并翻译 | 示例

摘要

Global asymptotic stability problem is studied for a class of recurrent neural networks with distributed delays satisfying Lebesgue–Stieljies measures on the basis of linear matrix inequality. The concerned network model includes many neural network models with various delays and structures as its special cases, such as the delays covering the discrete delays and distributed delays, and the network structures containing the neutral-type networks and high-order networks. Therefore, many new stability criteria for the above neural network models have also been derived from the present stability analysis method. All the obtained stability results have similar matrix inequality structures and can be easily checked. Three numerical examples are used to show the effectiveness of the obtained results.
机译:基于线性矩阵不等式,研究了满足Lebesgue–Stieljies测度的一类具有分布时滞的递归神经网络的全局渐近稳定性问题。所关注的网络模型包括许多神经网络模型,这些神经网络模型具有各种延迟和结构作为其特例,例如涵盖离散延迟和分布式延迟的延迟,以及包含中性型网络和高阶网络的网络结构。因此,目前的稳定性分析方法也为上述神经网络模型提供了许多新的稳定性判据。所有获得的稳定性结果都具有相似的矩阵不等式结构,可以轻松检查。使用三个数值示例来说明所获得结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号