首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >LMI-based approach for asymptotically stability analysis of delayedneural networks
【24h】

LMI-based approach for asymptotically stability analysis of delayedneural networks

机译:基于LMI的时滞神经网络渐近稳定性分析方法

获取原文
获取原文并翻译 | 示例

摘要

This paper derives some sufficient conditions for asymptotic stability of neural networks with constant or time-varying delays. The Lyapunov-Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) approach are employed to investigate the problem. It shows how some well-known results can be refined and generalized in a straightforward manner. For the case of constant time delays, the stability criteria are delay-independent; for the case of time-varying delays, the stability criteria are delay-dependent. The results obtained in this paper are less conservative than the ones reported so far in the literature and provides one more set of criteria for determining the stability of delayed neural networks
机译:本文得出了具有恒定或时变时滞的神经网络渐近稳定性的一些充分条件。利用泛函微分方程的Lyapunov-Krasovskii稳定性理论和线性矩阵不等式(LMI)方法来研究该问题。它显示了如何以直接的方式来完善和推广一些众所周知的结果。对于恒定的时延,稳定性标准与时延无关。对于时变延迟的情况,稳定性标准取决于延迟。与迄今文献报道的结果相比,本文获得的结果不那么保守,并且为确定延迟神经网络的稳定性提供了更多的标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号