首页> 外文期刊>Neural Networks, IEEE Transactions on >Analysis and Compensation of the Effects of Analog VLSI Arithmetic on the LMS Algorithm
【24h】

Analysis and Compensation of the Effects of Analog VLSI Arithmetic on the LMS Algorithm

机译:模拟VLSI算法对LMS算法影响的分析和补偿

获取原文
获取原文并翻译 | 示例

摘要

Analog very large scale integration implementations of neural networks can compute using a fraction of the size and power required by their digital counterparts. However, intrinsic limitations of analog hardware, such as device mismatch, charge leakage, and noise, reduce the accuracy of analog arithmetic circuits, degrading the performance of large-scale adaptive systems. In this paper, we present a detailed mathematical analysis that relates different parameters of the hardware limitations to specific effects on the convergence properties of linear perceptrons trained with the least-mean-square (LMS) algorithm. Using this analysis, we derive design guidelines and introduce simple on-chip calibration techniques to improve the accuracy of analog neural networks with a small cost in die area and power dissipation. We validate our analysis by evaluating the performance of a mixed-signal complementary metal-oxide-semiconductor implementation of a 32-input perceptron trained with LMS.
机译:神经网络的模拟超大规模集成实现可以使用其数字副本所需的很小一部分的大小和功率进行计算。然而,模拟硬件的固有局限性,例如器件失配,电荷泄漏和噪声,降低了模拟算术电路的精度,从而降低了大型自适应系统的性能。在本文中,我们提供了详细的数学分析,该分析将硬件限制的不同参数与对使用最小均方(LMS)算法训练的线性感知器的收敛特性的特定影响相关联。通过这种分析,我们得出了设计准则,并介绍了简单的片上校准技术,从而以较小的芯片面积和功耗来提高模拟神经网络的精度。我们通过评估使用LMS训练的32输入感知器的混合信号互补金属氧化物半导体实现的性能来验证我们的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号