首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Highly Accurate Moving Object Detection in Variable Bit Rate Video-Based Traffic Monitoring Systems
【24h】

Highly Accurate Moving Object Detection in Variable Bit Rate Video-Based Traffic Monitoring Systems

机译:基于可变比特率视频的交通监控系统中的高精度运动物体检测

获取原文
获取原文并翻译 | 示例

摘要

Automated motion detection, which segments moving objects from video streams, is the key technology of intelligent transportation systems for traffic management. Traffic surveillance systems use video communication over real-world networks with limited bandwidth, which frequently suffers because of either network congestion or unstable bandwidth. Evidence supporting these problems abounds in publications about wireless video communication. Thus, to effectively perform the arduous task of motion detection over a network with unstable bandwidth, a process by which bit-rate is allocated to match the available network bandwidth is necessitated. This process is accomplished by the rate control scheme. This paper presents a new motion detection approach that is based on the cerebellar-model-articulation-controller (CMAC) through artificial neural networks to completely and accurately detect moving objects in both high and low bit-rate video streams. The proposed approach is consisted of a probabilistic background generation (PBG) module and a moving object detection (MOD) module. To ensure that the properties of variable bit-rate video streams are accommodated, the proposed PBG module effectively produces a probabilistic background model through an unsupervised learning process over variable bit-rate video streams. Next, the MOD module, which is based on the CMAC network, completely and accurately detects moving objects in both low and high bit-rate video streams by implementing two procedures: 1) a block selection procedure and 2) an object detection procedure. The detection results show that our proposed approach is capable of performing with higher efficacy when compared with the results produced by other state-of-the-art approaches in variable bit-rate video streams over real-world limited bandwidth networks. Both qualitative and quantitative evaluations support this claim; for instance, the proposed approach achieves
机译:自动运动检测将视频流中的运动对象分割开,是用于交通管理的智能运输系统的关键技术。流量监控系统在带宽有限的现实网络上使用视频通信,由于网络拥塞或带宽不稳定,经常会受到影响。关于这些问题的证据在有关无线视频通信的出版物中比比皆是。因此,为了有效地在具有不稳定带宽的网络上执行运动检测的繁重任务,需要一种分配比特率以匹配可用网络带宽的处理。该过程由速率控制方案完成。本文提出了一种新的基于小脑模型关节控制控制器(CMAC)的运动检测方法,该方法通过人工神经网络来完全准确地检测高比特率和低比特率视频流中的运动对象。所提出的方法由概率背景生成(PBG)模块和运动物体检测(MOD)模块组成。为了确保适应可变比特率视频流的属性,所提出的PBG模块通过对可变比特率视频流的无监督学习过程来有效地产生概率背景模型。接下来,基于CMAC网络的MOD模块通过执行以下两个过程来完全,准确地检测低比特率和高比特率视频流中的运动对象:1)块选择过程和2)对象检测过程。检测结果表明,与其他最新方法在现实世界中有限带宽网络上的可变比特率视频流中产生的结果相比,我们提出的方法具有更高的功效。定性和定量评估均支持该主张。例如,所提出的方法实现了

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号