首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Prediction Intervals for a Noisy Nonlinear Time Series Based on a Bootstrapping Reservoir Computing Network Ensemble
【24h】

Prediction Intervals for a Noisy Nonlinear Time Series Based on a Bootstrapping Reservoir Computing Network Ensemble

机译:基于自举水库计算网络集合的嘈杂非线性时间序列的预测区间

获取原文
获取原文并翻译 | 示例

摘要

Prediction intervals that provide estimated values as well as the corresponding reliability are applied to nonlinear time series forecast. However, constructing reliable prediction intervals for noisy time series is still a challenge. In this paper, a bootstrapping reservoir computing network ensemble (BRCNE) is proposed and a simultaneous training method based on Bayesian linear regression is developed. In addition, the structural parameters of the BRCNE, that is, the number of reservoir computing networks and the reservoir dimension, are determined off-line by the 0.632 bootstrap cross-validation. To verify the effectiveness of the proposed method, two kinds of time series data, including the multisuperimposed oscillator problem with additive noises and a practical gas flow in steel industry are employed here. The experimental results indicate that the proposed approach has a satisfactory performance on prediction intervals for practical applications.
机译:提供估计值以及相应可靠性的预测间隔将应用于非线性时间序列预测。但是,为嘈杂的时间序列构建可靠的预测间隔仍然是一个挑战。本文提出了自举水库计算网络集成(BRCNE),并提出了一种基于贝叶斯线性回归的同时训练方法。另外,BRCNE的结构参数,即储层计算网络的数量和储层尺寸,是通过0.632自举交叉验证离线确定的。为了验证该方法的有效性,本文采用了两种时间序列数据,包括具有叠加噪声的多重叠加振荡器问题和钢铁行业的实际气体流量。实验结果表明,该方法在实际应用的预测区间上具有令人满意的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号