首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Gaussian Process Model for Data Association and a Semidefinite Programming Solution
【24h】

A Gaussian Process Model for Data Association and a Semidefinite Programming Solution

机译:数据关联的高斯过程模型和半定规划解决方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a Bayesian model for the data association problem, in which trajectory smoothness is enforced through the use of Gaussian process priors. This model allows to score candidate associations using the evidence framework, thus casting the data association problem into an optimization problem. Under some additional mild assumptions, this optimization problem is shown to be equivalent to a constrained Max -section problem. Furthermore, for , a MaxCut formulation is obtained, to which an approximate solution can be efficiently found using an SDP relaxation. Solving this MaxCut problem is equivalent to finding the optimal association out of the combinatorially many possibilities. The obtained clustering depends only on two hyperparameters, which can also be selected by maximum evidence.
机译:在本文中,我们提出了一种针对数据关联问题的贝叶斯模型,其中通过使用高斯过程先验来增强轨迹的平滑度。该模型允许使用证据框架对候选关联进行评分,从而将数据关联问题转化为优化问题。在一些额外的温和假设下,该优化问题显示为等效于约束最大截面问题。此外,对于,获得了MaxCut配方,使用SDP松弛可以有效地找到近似解。解决此MaxCut问题等同于从多种可能性中找到最佳关联。所获得的聚类仅取决于两个超参数,也可以通过最大证据来选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号