首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A New Learning Algorithm for a Fully Connected Neuro-Fuzzy Inference System
【24h】

A New Learning Algorithm for a Fully Connected Neuro-Fuzzy Inference System

机译:完全连接的神经模糊推理系统的新学习算法

获取原文
获取原文并翻译 | 示例

摘要

A traditional neuro-fuzzy system is transformed into an equivalent fully connected three layer neural network (NN), namely, the fully connected neuro-fuzzy inference systems (F-CONFIS). The F-CONFIS differs from traditional NNs by its dependent and repeated weights between input and hidden layers and can be considered as the variation of a kind of multilayer NN. Therefore, an efficient learning algorithm for the F-CONFIS to cope these repeated weights is derived. Furthermore, a dynamic learning rate is proposed for neuro-fuzzy systems via F-CONFIS where both premise (hidden) and consequent portions are considered. Several simulation results indicate that the proposed approach achieves much better accuracy and fast convergence.
机译:传统的神经模糊系统被转换为等效的完全连接的三层神经网络(NN),即完全连接的神经模糊推理系统(F-CONFIS)。 F-CONFIS与传统NN的区别在于其在输入层和隐藏层之间的相关权重和重复权重,可以视为一种多层NN的变体。因此,得出了一种有效的学习算法,用于F-CONFIS应对这些重复的权重。此外,通过F-CONFIS为神经模糊系统提出了动态学习率,其中考虑了前提(隐藏)和后续部分。若干仿真结果表明,该方法具有更高的精度和收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号