首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Comprehensive Review of Stability Analysis of Continuous-Time Recurrent Neural Networks
【24h】

A Comprehensive Review of Stability Analysis of Continuous-Time Recurrent Neural Networks

机译:连续时间递归神经网络稳定性分析的综述

获取原文
获取原文并翻译 | 示例

摘要

Stability problems of continuous-time recurrent neural networks have been extensively studied, and many papers have been published in the literature. The purpose of this paper is to provide a comprehensive review of the research on stability of continuous-time recurrent neural networks, including Hopfield neural networks, Cohen-Grossberg neural networks, and related models. Since time delay is inevitable in practice, stability results of recurrent neural networks with different classes of time delays are reviewed in detail. For the case of delay-dependent stability, the results on how to deal with the constant/variable delay in recurrent neural networks are summarized. The relationship among stability results in different forms, such as algebraic inequality forms, (M) -matrix forms, linear matrix inequality forms, and Lyapunov diagonal stability forms, is discussed and compared. Some necessary and sufficient stability conditions for recurrent neural networks without time delays are also discussed. Concluding remarks and future directions of stability analysis of recurrent neural networks are given.
机译:连续时间递归神经网络的稳定性问题已被广泛研究,并且在文献中发表了许多论文。本文的目的是对包括Hopfield神经网络,Cohen-Grossberg神经网络和相关模型在内的连续时间递归神经网络的稳定性研究进行全面综述。由于在实践中不可避免会有时间延迟,因此将详细回顾具有不同类别的时间延迟的递归神经网络的稳定性结果。对于时滞相关的稳定性,总结了如何处理循环神经网络中的恒定/可变时延的结果。讨论并比较了不同形式的稳定性结果之间的关系,例如代数不等式,(M)-矩阵形式,线性矩阵不等式和Lyapunov对角稳定性形式。还讨论了没有时间延迟的递归神经网络的一些必要和充分的稳定性条件。给出了循环神经网络稳定性分析的结论和未来的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号