首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Efficient Exploratory Learning of Inverse Kinematics on a Bionic Elephant Trunk
【24h】

Efficient Exploratory Learning of Inverse Kinematics on a Bionic Elephant Trunk

机译:仿生大象躯干逆运动学的有效探索性学习

获取原文
获取原文并翻译 | 示例

摘要

We present an approach to learn the inverse kinematics of the “bionic handling assistant”—an elephant trunk robot. This task comprises substantial challenges including high dimensionality, restrictive and unknown actuation ranges, and nonstationary system behavior. We use a recent exploration scheme, online goal babbling, which deals with these challenges by bootstrapping and adapting the inverse kinematics on the fly. We show the success of the method in extensive real-world experiments on the nonstationary robot, including a novel combination of learning and traditional feedback control. Simulations further investigate the impact of nonstationary actuation ranges, drifting sensors, and morphological changes. The experiments provide the first substantial quantitative real-world evidence for the success of goal-directed bootstrapping schemes, moreover with the challenge of nonstationary system behavior. We thereby provide the first functioning control concept for this challenging robot platform.
机译:我们提出一种方法来学习“仿生搬运助手”(大象树干机器人)的逆运动学。这项任务包括大量挑战,包括高尺寸,致动范围受限和未知以及系统不稳定。我们使用一种最新的探索方案,即在线目标串流,该方案通过自举和动态调整逆运动学来应对这些挑战。我们在非平稳机器人的大量实际实验中证明了该方法的成功,包括学习与传统反馈控制的新颖结合。仿真进一步研究了非平稳驱动范围,漂移传感器和形态变化的影响。实验为目标导向的自举方案的成功提供了第一个实质性的定量现实证据,此外还提出了非平稳系统行为的挑战。因此,我们为这个具有挑战性的机器人平台提供了第一个功能控制概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号