首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >PCA Feature Extraction for Change Detection in Multidimensional Unlabeled Data
【24h】

PCA Feature Extraction for Change Detection in Multidimensional Unlabeled Data

机译:PCA特征提取用于多维未标记数据的变化检测

获取原文
获取原文并翻译 | 示例

摘要

When classifiers are deployed in real-world applications, it is assumed that the distribution of the incoming data matches the distribution of the data used to train the classifier. This assumption is often incorrect, which necessitates some form of change detection or adaptive classification. While there has been a lot of work on change detection based on the classification error monitored over the course of the operation of the classifier, finding changes in multidimensional unlabeled data is still a challenge. Here, we propose to apply principal component analysis (PCA) for feature extraction prior to the change detection. Supported by a theoretical example, we argue that the components with the lowest variance should be retained as the extracted features because they are more likely to be affected by a change. We chose a recently proposed semiparametric log-likelihood change detection criterion that is sensitive to changes in both mean and variance of the multidimensional distribution. An experiment with 35 datasets and an illustration with a simple video segmentation demonstrate the advantage of using extracted features compared to raw data. Further analysis shows that feature extraction through PCA is beneficial, specifically for data with multiple balanced classes.
机译:在实际应用中部署分类器时,假设传入数据的分布与用于训练分类器的数据的分布相匹配。这种假设通常是不正确的,这需要某种形式的变更检测或自适应分类。尽管基于在分类器操作过程中监视的分类错误进行了很多更改检测工作,但是在多维未标记数据中查找更改仍然是一个挑战。在这里,我们建议在变化检测之前将主成分分析(PCA)应用于特征提取。在一个理论示例的支持下,我们认为方差最小的组件应保留为提取的特征,因为它们更容易受到更改的影响。我们选择了最近提出的半参数对数似然变化检测标准,该标准对多维分布的均值和方差的变化都敏感。包含35个数据集的实验和带有简单视频分割的插图展示了与原始数据相比使用提取特征的优势。进一步的分析表明,通过PCA进行特征提取是有益的,特别是对于具有多个平衡类的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号