首页> 外文OA文献 >A PCA-Based Change Detection Framework for Multidimensional Data Streams
【2h】

A PCA-Based Change Detection Framework for Multidimensional Data Streams

机译:基于PCA的多维数据流变化检测框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detecting changes in multidimensional data streams is an important and challenging task. In unsupervised change detection, changes are usually detected by comparing the distribution in a current (test) window with a reference window. It is thus essential to design divergence metrics and density estimators for comparing the data distributions, which are mostly done for univariate data. Detecting changes in multidimensional data streams brings difficulties to the density estimation and comparisons. In this paper, we propose a framework for detecting changes in multidimensional data streams based on principal component analysis, which is used for projecting data into a lower dimensional space, thus facilitating density estimation and change-score calculations.ududThe proposed framework also has advantages over existing approaches by reducing computational costs with an efficient density estimator, promoting the change-score calculation by introducing effective divergence metrics, and by minimizing the efforts required from users on the threshold parameter setting by using the Page-Hinkley test. The evaluation results on synthetic and real data show that our framework outperforms two baseline methods in terms of both detection accuracy and computational costs.
机译:检测多维数据流中的变化是一项重要且具有挑战性的任务。在无监督更改检测中,通常通过将当前(测试)窗口中的分布与参考窗口进行比较来检测更改。因此,有必要设计差异度量和密度估计器以比较数据分布,这主要是针对单变量数据完成的。检测多维数据流中的变化给密度估计和比较带来困难。在本文中,我们提出了一个基于主成分分析的多维数据流变化检测框架,该框架用于将数据投影到较低维度的空间中,从而有助于密度估计和变化得分计算。 ud ud与现有方法相比,它具有以下优势:通过使用有效的密度估算器降低计算成本,通过引入有效的差异度指标来促进变化得分计算,以及通过使用Page-Hinkley测试将用户在阈值参数设置上所需的工作最小化。综合和真实数据的评估结果表明,我们的框架在检测准确性和计算成本方面均优于两种基线方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号