首页> 美国政府科技报告 >Case Study for New Feature Extraction Algorithms, Automated Data Classification, and Model-Assisted Probability of Detection Evaluation (Preprint)
【24h】

Case Study for New Feature Extraction Algorithms, Automated Data Classification, and Model-Assisted Probability of Detection Evaluation (Preprint)

机译:新特征提取算法,自动数据分类和模型辅助检测评估概率的案例研究(预印本)

获取原文

摘要

This paper explores feature extraction algorithms for crack characterization in eddy current inspection of fastener sites. A novel feature extraction method fitting approximate models to data associated with geometric part features addressing adjacent fastener sites and panel edges are developed. Data classification methods in the circumferential direction around fastener sites are developed to better characterize fatigue cracks with improved noise invariance. Model-assisted probability of detection results are presented highlighting the benefit of automation in NDE.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号